Copied to
clipboard

G = C626Q8order 288 = 25·32

4th semidirect product of C62 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial

Aliases: C626Q8, C62.222C23, (C2×C6)⋊5Dic6, (C2×C12).29D6, C6.105(S3×D4), C3⋊Dic3.63D4, C6.41(C2×Dic6), (C22×C6).84D6, C12⋊Dic35C2, C625C4.5C2, (C6×C12).10C22, C6.Dic64C2, C3217(C22⋊Q8), C6.92(D42S3), (C2×C62).61C22, C222(C324Q8), C35(Dic3.D4), C2.6(C12.D6), C2.6(D4×C3⋊S3), (C3×C6).55(C2×Q8), (C3×C6).228(C2×D4), (C3×C22⋊C4).5S3, C23.17(C2×C3⋊S3), (C2×C324Q8)⋊4C2, C22⋊C4.1(C3⋊S3), C2.6(C2×C324Q8), (C3×C6).142(C4○D4), (C2×C6).239(C22×S3), (C32×C22⋊C4).1C2, C22.39(C22×C3⋊S3), (C22×C3⋊Dic3).10C2, (C2×C3⋊Dic3).78C22, (C2×C4).5(C2×C3⋊S3), SmallGroup(288,735)

Series: Derived Chief Lower central Upper central

C1C62 — C626Q8
C1C3C32C3×C6C62C2×C3⋊Dic3C22×C3⋊Dic3 — C626Q8
C32C62 — C626Q8
C1C22C22⋊C4

Generators and relations for C626Q8
 G = < a,b,c,d | a6=b6=c4=1, d2=c2, ab=ba, cac-1=ab3, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 732 in 222 conjugacy classes, 79 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, C32, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C22×C6, C22⋊Q8, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic6, C22×Dic3, C324Q8, C2×C3⋊Dic3, C2×C3⋊Dic3, C6×C12, C2×C62, Dic3.D4, C6.Dic6, C12⋊Dic3, C625C4, C32×C22⋊C4, C2×C324Q8, C22×C3⋊Dic3, C626Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, C3⋊S3, Dic6, C22×S3, C22⋊Q8, C2×C3⋊S3, C2×Dic6, S3×D4, D42S3, C324Q8, C22×C3⋊S3, Dic3.D4, C2×C324Q8, D4×C3⋊S3, C12.D6, C626Q8

Smallest permutation representation of C626Q8
On 144 points
Generators in S144
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 33 29 36 4 13)(2 31 30 34 5 14)(3 32 28 35 6 15)(7 22 27 16 71 19)(8 23 25 17 72 20)(9 24 26 18 70 21)(10 57 59 68 66 62)(11 55 60 69 64 63)(12 56 58 67 65 61)(37 46 53 40 51 44)(38 47 54 41 49 45)(39 48 52 42 50 43)(73 142 80 76 139 83)(74 143 81 77 140 84)(75 144 82 78 141 79)(85 106 101 88 103 98)(86 107 102 89 104 99)(87 108 97 90 105 100)(91 120 110 94 117 113)(92 115 111 95 118 114)(93 116 112 96 119 109)(121 133 129 124 136 132)(122 134 130 125 137 127)(123 135 131 126 138 128)
(1 77 23 106)(2 75 24 104)(3 73 22 108)(4 143 20 98)(5 141 21 102)(6 139 19 100)(7 87 15 83)(8 85 13 81)(9 89 14 79)(10 118 49 136)(11 116 50 134)(12 120 51 138)(16 90 28 80)(17 88 29 84)(18 86 30 82)(25 101 33 140)(26 99 31 144)(27 97 32 142)(34 78 70 107)(35 76 71 105)(36 74 72 103)(37 123 58 94)(38 121 59 92)(39 125 60 96)(40 126 61 91)(41 124 62 95)(42 122 63 93)(43 130 55 112)(44 128 56 110)(45 132 57 114)(46 135 67 117)(47 133 68 115)(48 137 69 119)(52 127 64 109)(53 131 65 113)(54 129 66 111)
(1 58 23 37)(2 60 24 39)(3 59 22 38)(4 65 20 53)(5 64 21 52)(6 66 19 54)(7 47 15 68)(8 46 13 67)(9 48 14 69)(10 16 49 28)(11 18 50 30)(12 17 51 29)(25 44 33 56)(26 43 31 55)(27 45 32 57)(34 63 70 42)(35 62 71 41)(36 61 72 40)(73 121 108 92)(74 126 103 91)(75 125 104 96)(76 124 105 95)(77 123 106 94)(78 122 107 93)(79 137 89 119)(80 136 90 118)(81 135 85 117)(82 134 86 116)(83 133 87 115)(84 138 88 120)(97 114 142 132)(98 113 143 131)(99 112 144 130)(100 111 139 129)(101 110 140 128)(102 109 141 127)

G:=sub<Sym(144)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,33,29,36,4,13)(2,31,30,34,5,14)(3,32,28,35,6,15)(7,22,27,16,71,19)(8,23,25,17,72,20)(9,24,26,18,70,21)(10,57,59,68,66,62)(11,55,60,69,64,63)(12,56,58,67,65,61)(37,46,53,40,51,44)(38,47,54,41,49,45)(39,48,52,42,50,43)(73,142,80,76,139,83)(74,143,81,77,140,84)(75,144,82,78,141,79)(85,106,101,88,103,98)(86,107,102,89,104,99)(87,108,97,90,105,100)(91,120,110,94,117,113)(92,115,111,95,118,114)(93,116,112,96,119,109)(121,133,129,124,136,132)(122,134,130,125,137,127)(123,135,131,126,138,128), (1,77,23,106)(2,75,24,104)(3,73,22,108)(4,143,20,98)(5,141,21,102)(6,139,19,100)(7,87,15,83)(8,85,13,81)(9,89,14,79)(10,118,49,136)(11,116,50,134)(12,120,51,138)(16,90,28,80)(17,88,29,84)(18,86,30,82)(25,101,33,140)(26,99,31,144)(27,97,32,142)(34,78,70,107)(35,76,71,105)(36,74,72,103)(37,123,58,94)(38,121,59,92)(39,125,60,96)(40,126,61,91)(41,124,62,95)(42,122,63,93)(43,130,55,112)(44,128,56,110)(45,132,57,114)(46,135,67,117)(47,133,68,115)(48,137,69,119)(52,127,64,109)(53,131,65,113)(54,129,66,111), (1,58,23,37)(2,60,24,39)(3,59,22,38)(4,65,20,53)(5,64,21,52)(6,66,19,54)(7,47,15,68)(8,46,13,67)(9,48,14,69)(10,16,49,28)(11,18,50,30)(12,17,51,29)(25,44,33,56)(26,43,31,55)(27,45,32,57)(34,63,70,42)(35,62,71,41)(36,61,72,40)(73,121,108,92)(74,126,103,91)(75,125,104,96)(76,124,105,95)(77,123,106,94)(78,122,107,93)(79,137,89,119)(80,136,90,118)(81,135,85,117)(82,134,86,116)(83,133,87,115)(84,138,88,120)(97,114,142,132)(98,113,143,131)(99,112,144,130)(100,111,139,129)(101,110,140,128)(102,109,141,127)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,33,29,36,4,13)(2,31,30,34,5,14)(3,32,28,35,6,15)(7,22,27,16,71,19)(8,23,25,17,72,20)(9,24,26,18,70,21)(10,57,59,68,66,62)(11,55,60,69,64,63)(12,56,58,67,65,61)(37,46,53,40,51,44)(38,47,54,41,49,45)(39,48,52,42,50,43)(73,142,80,76,139,83)(74,143,81,77,140,84)(75,144,82,78,141,79)(85,106,101,88,103,98)(86,107,102,89,104,99)(87,108,97,90,105,100)(91,120,110,94,117,113)(92,115,111,95,118,114)(93,116,112,96,119,109)(121,133,129,124,136,132)(122,134,130,125,137,127)(123,135,131,126,138,128), (1,77,23,106)(2,75,24,104)(3,73,22,108)(4,143,20,98)(5,141,21,102)(6,139,19,100)(7,87,15,83)(8,85,13,81)(9,89,14,79)(10,118,49,136)(11,116,50,134)(12,120,51,138)(16,90,28,80)(17,88,29,84)(18,86,30,82)(25,101,33,140)(26,99,31,144)(27,97,32,142)(34,78,70,107)(35,76,71,105)(36,74,72,103)(37,123,58,94)(38,121,59,92)(39,125,60,96)(40,126,61,91)(41,124,62,95)(42,122,63,93)(43,130,55,112)(44,128,56,110)(45,132,57,114)(46,135,67,117)(47,133,68,115)(48,137,69,119)(52,127,64,109)(53,131,65,113)(54,129,66,111), (1,58,23,37)(2,60,24,39)(3,59,22,38)(4,65,20,53)(5,64,21,52)(6,66,19,54)(7,47,15,68)(8,46,13,67)(9,48,14,69)(10,16,49,28)(11,18,50,30)(12,17,51,29)(25,44,33,56)(26,43,31,55)(27,45,32,57)(34,63,70,42)(35,62,71,41)(36,61,72,40)(73,121,108,92)(74,126,103,91)(75,125,104,96)(76,124,105,95)(77,123,106,94)(78,122,107,93)(79,137,89,119)(80,136,90,118)(81,135,85,117)(82,134,86,116)(83,133,87,115)(84,138,88,120)(97,114,142,132)(98,113,143,131)(99,112,144,130)(100,111,139,129)(101,110,140,128)(102,109,141,127) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,33,29,36,4,13),(2,31,30,34,5,14),(3,32,28,35,6,15),(7,22,27,16,71,19),(8,23,25,17,72,20),(9,24,26,18,70,21),(10,57,59,68,66,62),(11,55,60,69,64,63),(12,56,58,67,65,61),(37,46,53,40,51,44),(38,47,54,41,49,45),(39,48,52,42,50,43),(73,142,80,76,139,83),(74,143,81,77,140,84),(75,144,82,78,141,79),(85,106,101,88,103,98),(86,107,102,89,104,99),(87,108,97,90,105,100),(91,120,110,94,117,113),(92,115,111,95,118,114),(93,116,112,96,119,109),(121,133,129,124,136,132),(122,134,130,125,137,127),(123,135,131,126,138,128)], [(1,77,23,106),(2,75,24,104),(3,73,22,108),(4,143,20,98),(5,141,21,102),(6,139,19,100),(7,87,15,83),(8,85,13,81),(9,89,14,79),(10,118,49,136),(11,116,50,134),(12,120,51,138),(16,90,28,80),(17,88,29,84),(18,86,30,82),(25,101,33,140),(26,99,31,144),(27,97,32,142),(34,78,70,107),(35,76,71,105),(36,74,72,103),(37,123,58,94),(38,121,59,92),(39,125,60,96),(40,126,61,91),(41,124,62,95),(42,122,63,93),(43,130,55,112),(44,128,56,110),(45,132,57,114),(46,135,67,117),(47,133,68,115),(48,137,69,119),(52,127,64,109),(53,131,65,113),(54,129,66,111)], [(1,58,23,37),(2,60,24,39),(3,59,22,38),(4,65,20,53),(5,64,21,52),(6,66,19,54),(7,47,15,68),(8,46,13,67),(9,48,14,69),(10,16,49,28),(11,18,50,30),(12,17,51,29),(25,44,33,56),(26,43,31,55),(27,45,32,57),(34,63,70,42),(35,62,71,41),(36,61,72,40),(73,121,108,92),(74,126,103,91),(75,125,104,96),(76,124,105,95),(77,123,106,94),(78,122,107,93),(79,137,89,119),(80,136,90,118),(81,135,85,117),(82,134,86,116),(83,133,87,115),(84,138,88,120),(97,114,142,132),(98,113,143,131),(99,112,144,130),(100,111,139,129),(101,110,140,128),(102,109,141,127)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G4H6A···6L6M···6T12A···12P
order1222223333444444446···66···612···12
size1111222222441818181836362···24···44···4

54 irreducible representations

dim1111111222222244
type+++++++++-++-+-
imageC1C2C2C2C2C2C2S3D4Q8D6D6C4○D4Dic6S3×D4D42S3
kernelC626Q8C6.Dic6C12⋊Dic3C625C4C32×C22⋊C4C2×C324Q8C22×C3⋊Dic3C3×C22⋊C4C3⋊Dic3C62C2×C12C22×C6C3×C6C2×C6C6C6
# reps12111114228421644

Matrix representation of C626Q8 in GL8(𝔽13)

10000000
012000000
00900000
00030000
0000121200
00001000
00000010
000000612
,
120000000
012000000
00900000
00030000
00001000
00000100
000000120
000000012
,
01000000
10000000
001200000
000120000
00001000
00000100
00000043
00000039
,
10000000
01000000
00010000
00100000
00001100
000001200
00000050
00000048

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,3,9],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,8] >;

C626Q8 in GAP, Magma, Sage, TeX

C_6^2\rtimes_6Q_8
% in TeX

G:=Group("C6^2:6Q8");
// GroupNames label

G:=SmallGroup(288,735);
// by ID

G=gap.SmallGroup(288,735);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,254,219,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽